Nobel per la Chimica a due ricercatrici per l’editing del genoma

editing del genoma premio nobel per la chimica

Il Premio Nobel per la Chimica è stato assegnato alle due ricercatrici Emmanuelle Charpentier e Jennifer A. Doudna “per avere sviluppato un sistema di editing del genoma”

Il sistema di editing del genoma CRISPR/Cas9, sviluppato dalle due ricercatrici, ha messo a disposizione una nuova potente soluzione per cambiare il DNA degli animali, delle piante e di altri microorganismi, con una precisione senza precedenti.

Questo sistema ha permesso negli ultimi anni di sviluppare nuove terapie contro i tumori e potrebbe rendere possibile la cura di diverse malattie ereditarie.

Anche se non ce ne rendiamo conto, da quando esiste la vita batteri e virus si fanno una guerra senza quartiere, dandosele di santa ragione.

batteriofagi (o fagi), per esempio, sono particolari virus che vanno a caccia di batteri. Si stima che da soli ogni giorno uccidano circa il 40% dei miliardi di miliardi di batteri che vivono negli oceani (e se ne formano di nuovi miliardi quotidianamente).

Dopo che sono entrati in contatto con i batteri, i fagi iniettano il proprio materiale genetico al loro interno, trasformandoli in piccole fabbriche che produrranno altri virus, che a loro volta infetteranno altri batteri. A differenza degli organismi più complessi e con un sistema immunitario avanzato, come il nostro, i batteri hanno meno difese e falliscono quasi sempre a resistere.

Talvolta accade però che alcuni batteri riescano a resistere all’attacco da parte dei batteriofagi. Quando ciò avviene, salvano parte del materiale genetico del virus nel loro codice genetico, in una sorta di catalogo che i ricercatori chiamano CRISPR, da clustered regularly interspaced short palindromic repeats (brevi ripetizioni palindrome raggruppate e separate a intervalli regolati).

Se in seguito entra nuovamente in contatto con un virus, il batterio produce una copia del materiale genetico che aveva archiviato e la passa a una proteina che si chiama Cas9. Questa si mette al lavoro e cerca all’interno del batterio pezzi di DNA e li confronta con quelli in archivio, per capire se sia presente un virus.

Nel caso in cui rilevi una corrispondenza, provvede a tagliare la sequenza genetica appartenente al virus, rendendola in questo modo innocua. In mancanza di istruzioni chiare, il batterio non può essere trasformato in una fabbrica di nuovi virus e non rischia di fare una brutta fine.

Editing
La Cas9 è una proteina estremamente precisa nel tagliare pezzi di DNA.

Quando Chapentier e Doudna se ne accorsero nel corso dei loro studi – mettendo insieme le conoscenze raccolte separatamente in anni di ricerca e con altri ricercatori – si chiesero se potessero sfruttare Cas9 per programmare il sistema CRISPR e utilizzarlo per fare editing del genoma (materiale genetico).

L’obiettivo piuttosto ambizioso non le scoraggiò e portò alla creazione di un sistema di “forbici genetiche” descritto nel loro studio pubblicato nel 2012.

Semplificando molto, le forbici di CRISPR/Cas9 per modificare il materiale genetico in una cellula funzionano partendo da una sequenza genetica (RNA guida) approntata dai ricercatori che corrisponde a quella del DNA dove si deve effettuare il taglio nella cellula.

La proteina Cas9 si mette all’opera ed effettua il taglio: se non ci sono altre istruzioni, le cellula ripara il proprio DNA perdendo un pezzo del proprio codice genetico, comportando la perdita delle istruzioni per il gene che i ricercatori volevano disattivare.

Il sistema consente inoltre di innestare del nuovo DNA nella fase di riparazione, nel caso in cui i ricercatori vogliano modificare ulteriormente il funzionamento della cellula.

Opportunità e pericoli

Prima dell’avvento di CRISPR/Cas9, modificare i geni in una cellula era estremamente difficile, richiedeva molto tempo e spesso portava a risultati poco affidabili.

Grazie alle forbici genetiche, invece, si possono effettuare modifiche molto più accurate e in tempi più rapidi.

Il sistema è ormai diffuso in numerosi ambiti della ricerca, anche se non è sempre facile da padroneggiare e ha mostrato di avere la necessità di qualche miglioramento.

I ricercatori in questi anni hanno utilizzato CRISPR/Cas9 soprattutto per comprendere meglio il funzionamento dei geni e le loro interazioni, per esempio nel caso di malattie in alcuni animali.

La tecnica è impiegata anche per modificare il genoma delle piante, in modo da renderle più resistenti alla siccità, oppure a particolari parassiti, riducendo la necessità di utilizzare composti chimici potenzialmente dannosi per la nostra salute.

CRISPR/Cas9 è ritenuta inoltre una risorsa molto promettente per sviluppare nuove cure contro alcune malattie ereditarie, anche se i risultati ottenuti per ora sono ancora parziali e le tecniche da affinare. I ricercatori stanno anche sperimentando l’impiego di CRISPR per modificare le nostre cellule immunitarie, rendendole in grado di andare a caccia delle cellule tumorali con maggiore efficacia.

Un sistema così accurato di modifica del genoma apre inoltre scenari ancora inesplorati ed eticamente controversi. In linea teorica, CRISPR/Cas9 potrebbe essere impiegato per creare esseri umani geneticamente modificati. Potrebbe offrire enormi benefici per ridurre i rischi di nascite con gravi malattie ereditarie, ma potrebbe anche portare a modifiche irreversibili del nostro patrimonio genetico, trasmesso di generazione in generazione.

Emmanuelle Charpentier è nata nel 1968 a Jubisy-sur-Orge in Francia ed è direttrice della Divisione per le scienze dei patogeni presso il Max Planck Institute di Berlino, in Germania.


Jennifer A. Doudna è nata nel 1964 a Washington, DC (Stati Uniti) ed è docente presso l’Università della California, Berkeley.

Recommended Posts