Litio e batterie ricaricabili

Di Roberto Romita – Industrial Key Account Manager – Industrial Division di Sparq

Litio e batterie ricaricabili: il BESS è una tecnologia oramai collaudata e sono davvero numerose le applicazioni che vedono applicati i sistemi di accumulo

Tuttavia quando si parla di energy storage bisogna tenere presente che si tratta si di batterie ma che queste possiedono davvero molti tipi di chimica, e questa chimica ha particolari peculiarità. 

Queste peculiarità permettono a ogni batteria di esprimere al meglio le proprie potenzialità ma a determinate condizioni e in un determinato tempo.

È quindi di fondamentale importanza sapere quali sono le caratteristiche e il comportamento della cella e della sua chimica al fine di determinare con precisione quale tipologia è più adatta a una certa applicazione.

I sistemi di accumulo accostati ai sistemi di generazione che sfruttano l’energia rinnovabile, non sono tutti uguali.

A seconda della richiesta e della prestazione possono differire, in riferimento alla tipologia di cella e alla composizione, anche di molto. In questo articolo andremo ad affrontare nel dettaglio le caratteristiche della chimica delle celle ricaricabili.

Molte combinazioni, prestazioni differenti

Per quanto riguarda la chimica delle celle si sente spesso parlare di Litio e delle sue varie combinazioni con il Ferro, il Manganese, il Nickel il Cobalto, ecc.

Va tenuto presente che per ogni combinazione avremo prestazioni differenti anche in relazione al carico applicato (ovvero a “quanto” chiediamo alla nostra cella) e alle condizioni esterne.

In questa parte andiamo ad analizzare e confrontare valori nominali di tensione e corrente, curve di carica e scarica in relazione a valori di tempo e temperatura.

Non meno importante è da tenere presente caratteristiche di sicurezza, poiché sono note le problematiche di infiammabilità di alcune tipologie di cella.

Inoltre, alcune celle devono rispettare i requisiti stringenti ATEX al fine di poter essere impiegate in ambienti a rischio esplosione come anche resistere alla corrosione (e alle eventuali perdite) dovuta al funzionamento in aree gravose.

Un fattore chiave per la scelta corretta del tipo di batteria è dato quindi dalla quantità di potenza costante erogabile. Vediamo di seguito le tipologie di chimica andando ad analizzare pro e contro:

Litio Ferro Fosfato – LiFePO4

Chiamato anche LFP è una tipologia di cella che utilizza come materiale catodico tale chimica.

Molto utilizzata nelle applicazioni ESS, l’LFP si contraddistingue per un livello di sicurezza alto grazie a un’abbondante composizione ferrosa e a un elevato grado di stabilità al variare della temperatura.

Se confrontato con i valori del NiMH, la densità energetica dell’LFP è mediamente 100-120 Wh per kg.

Le celle hanno una tensione nominale di 3,2 V, operano in un range termico compreso fra -20 e 60 °C e sono caratterizzate da un tasso di autoscarica estremamente basso (meno dell’1%).

Inoltre, la caratteristica di scarica consente alle LFP di mantenere pressoché costante la prestazione fino a circa l’80% della propria capacità (Fig. 1), anche se sottoposte a carichi elevati.

Questa chimica è soggetta a un invecchiamento più lento indipendentemente dai valori di temperatura rispetto alle altre combinazioni.

Ciò permette un tempo di vita superiore ai 10 anni con un ciclo di ricariche (all’80% della capacità – C = 0,8) che può superare le 2000 volte.

Queste caratteristiche spiegano chiaramente come l’LPF è molto indicata per i sistemi ESS dove stabilità e durevolezza sono requisiti essenziali per garantire prestazioni costanti. 

Litio Nickel Cobalto Manganese – LiNiMnCoO2

Saliamo di tensione nominale con 3,7 V e di densità energetica, da 150 a oltre 200 Wh per Kg, con questa cella conosciuta anche come NMC di cui si compone il catodo.

Come range di temperatura di esercizio siamo vicini all’LFP con -20 e +55 °C così come un bassissimo tasso di autoscarica (circa l’1%).

Se mettiamo a confronto le curve di scarica tipiche di NMC e LFP possiamo notare una quasi replica di comportamento, sebbene l’NMC presenti un livello di scarica più rapido nella prima porzione di capacità.

Con un ciclo di ricarica che può raggiungere le 1500 volte (con C =0,8), questo tipo di cella è maggiormente utilizzato nelle applicazioni automotive.

Pur rappresentando una soluzione più performante rispetto all’LFP, va detto che questa chimica presenta un livello di sicurezza inferiore, poiché presenta alcune criticità divenendo più instabile durante la carica ad alte temperature.

Litio Titanato – Li2TiO3

Abbreviata anche come LTO, questa cella utilizza i nanocristalli di titanato di litio sulla superficie dell’anodo, ha una capacità di carica più rapida rispetto alle altre celle, ma anche una tensione nominale più bassa, 2,4 V e, ovviamente, una densità di 50-80 Wh per Kg.

Nonostante una capacità inferiore rispetto alle LFP e NMC questa chimica consente un range operativo termico ampliato compreso fra -30 e +75 °C e può sopportare per 4-5 secondi un carico di 30 volte superiore alla propria capacità.

Dalla curva di scarica si potrebbe dire che, valore di tensione a parte, l’LTO ha ossia una prestazione più costante rispetto all’NMC e più somigliante all’LFP.

Ad ogni modo, le caratteristiche sono quasi una via di mezzo fra le precedenti due chimiche analizzate. Sebbene il tasso di autoscarica sia decisamente più elevato e che può arrivare al 10% mensile (ma siamo ben lontani da valori elevati come quelli dell’NiMH), l’LTO può sopportare un numero di cicli di carica più che triplo rispetto a tutte le altre chimiche del Litio.

Come ulteriore punto a favore vi è l’estremo livello di sicurezza che fa dell’LTO la cella più sicura poiché iper-stabile indipendentemente dalle condizioni ambientali.

Litio e cobalto – LiCoO2

Risaliamo con valori di tensione e densità con questa combinazione catodica detta anche LCO. 3,7 V e fra 150 e 200 Wh per Kg, pongono le prestazioni del Litio Cobalto più vicino all’NMC anche se va fatta una considerazione: sebbene l’LCO abbiano un picco iniziale del tutto simile al Nichel Manganese Cobalto, la curva di scarica è molto meno stabile e al 60% della capacità della cella inizia il calo più deciso delle prestazioni.

Questa cella a prestazioni relativamente alte funziona fra i -20 e +60 °C ed è adatta all’utilizzo intenso dei dispositivi elettronici portatili.

Tuttavia l’LCO è caratterizzato anche da una bassa stabilità termica che tende al surriscaldamento al più pericoloso runaway termico una volta raggiunta la carica completa.

Litio nichel cobalto alluminio – LiNiCoAlO2

Questa cella, l’NCA, possiede il più alto livello di densità energetica con valori che superano i 200 per attestarsi a 260 Wh per Kg. Con una tensione nominale di 3,6 V, questo tipo di batteria ha caratteriste simili anche se di pochissimo inferiori all’NMC e ciò lo si può rilevare dalla Fig. 1: le due curve a confronto indicano un andamento di scarica pressoché parallelo unito a una certa costanza fino a circa l’80% di capacità delle due celle.

Questa chimica, con lo stesso range termico operativo delle LCO, pur garantendo alte prestazioni, un tasso di autoscarica relativamente basso (dall’1 al 5% mensile) paga però una quantità di ricariche fra le più basse con circa 5-600 cicli.

Come per le NMC onde poter allungare la vita utile di ogni singola cella è preferibile caricare non oltre il 90% della capacità della batteria. Anche le NCA analogamente alle LCO hanno un’instabilità relativamente alta che, a seguito del runaway termico, può anche dare origine a incendi secondari.  

Litio e Manganese – LiMn2O4

Questa tipologia (LMO) ha in comune alle LCM e LCO la tensione nominale di 3,7 V, mentre presenta un valore di densità energetica più basso compreso fra i 100 e 150 Wh per Kg.

La caratteristica principale dell’LMO è quella di fornire molta energia in un tempo ristretto e lo si evince da Fig.1. dove la curva di scarica tende al calo deciso poco oltre il 40% della propria capacità. Sebbene queste celle siano in grado di sopportare carichi 10 volte superiori per pochi secondi hanno comunque prestazioni inferiori alle celle al Cobalto. Con un range operativo uguale a LCO ed NCA, l’LMO ha un buon tasso di autoscarica che non supera il 5% mensile ma presenta comunque criticità diventando instabile a temperature di carica più elevate. 

C’è una chimica perfetta?

La risposta è no. Tralasciando le mode del momento, non vi è un prodotto polivalente proprio perché non esiste una chimica ideale o “più corretta”. Come abbiamo potuto vedere è necessario valutare non solo la capacità in Ah, la tensione nominale o la velocità di scarica, bensì anche il ciclo di vita utile, il livello di sicurezza che può garantire la cella. Poiché, ad esempio, se a fronte dei requisiti di prestazione elevata sceglieremo determinate tipologie di celle, non è garantito che l’effettiva potenza disponibile può rappresentare la migliore soluzione per alimentare una certa applicazione. Anche la quantità e la frequenza di carica sono fondamentali nella scelta della chimica: sempre per fare un esempio, nel caso di NCM e LCO, ipotizzando un carico – oltre 1 volta la capacità della cella – che richiede pertanto cariche più frequenti, avremmo come risultato performance più alte ma una sensibile riduzione della durata utile e quindi una sostituzione anzitempo delle celle. Inoltre, non meno importante, è l’attenta valutazione dell’ambiente in cui andrà ad operare la cella il che anch’esso sarà determinante per la durata utile come anche l’innalzamento del livello di pericolosità dovuto ad alte temperature di esercizio oppure agli ambienti gravosi e/o esplosivi.

Industria chimica in Italia, le prospettive future

In un Paese a forte vocazione manifatturiera, come l’Italia, l’industria chimica – con un  valore della produzione di oltre 66 miliardi di euro nel 2022 – rappresenta la quinta industria (dopo alimentare, metalli, meccanica, auto e componentistica) oltre che un fornitore indispensabile per tutte le filiere produttive

Le circa 2.800 imprese sul territorio nazionale occupano oltre 112 mila addetti altamente qualificati.

Dopo aver dimostrato grande capacità di reazione e resistenza al lungo periodo della pandemia, l’industria chimica risulta essere tra i settori più penalizzati dalla crisi energetica in un contesto che, nel corso del 2023, vede anche l’indebolimento della domanda.

Il rientro dei costi dai picchi del 2022 rappresenta un sollievo per l’industria chimica, tuttavia la crisi energetica non può dirsi ancora totalmente superata.

Il prezzo del gas, che si riflette anche sull’elettricità, si mantiene su livelli superiori al pre-crisi (più che doppi nella media dei primi 9 mesi) e alle altre aree geografiche (oltre il triplo rispetto agli USA) in presenza di rischi al rialzo con l’avvicinarsi dell’inverno.

Per effetto dell’accelerazione impressa dall’Europa agli obiettivi di riduzione delle emissioni, anche il costo dei permessi per le emissioni di CO2 nell’ambito del sistema ETS è salito dai 25 euro del 2019 ad oltre 85 euro nella media del 2023 in presenza di compensazioni dei costi indiretti legati all’elettricità solo parziali in Italia a causa dell’insufficienza dei fondi disponibili (nel 2021 erogazioni pari al 24% per i settori ammessi).

Per contenere i rincari di costo, le imprese dell’industria chimica stanno utilizzando ogni leva disponibile – inclusa, ove possibile, la sostituzione del gas naturale con combustibili alternativi e la riformulazione dei prodotti – oltre ad investire con convinzione nella cogenerazione, nelle rinnovabili e nell’economia circolare.

Ma, l’integrale sostituzione dei combustibili fossili (petrolio e gas naturale) – impiegati dall’industria chimica non solo come fonti energetiche ma anche come materie prime – è allo stato attuale irrealizzabile.

Prima dello shock energetico – considerando entrambi gli impieghi – il costo dell’energia aveva un’incidenza sul valore della produzione pari al 14%, la più elevata nel panorama industriale e con punte ben più elevate per alcune produzioni.

La domanda risulta in diffuso arretramento e non evidenzia segnali di ripresa.

Tra i principali settori clienti, le costruzioni scontano una decisa frenata, dopo il boom del 2021-2022, ma i volumi di attività risultano in calo anche in ambiti meno ciclici come l’alimentare.

Mostrano andamenti più positivi solo i settori che beneficiano ancora di spazi di rimbalzo post-pandemico, quali la cosmetica e l’auto (quest’ultima più per la normalizzazione delle catene di fornitura che per effetti di domanda).

La chimica è in contrazione in tutta Europa con un andamento particolarmente penalizzante in Germania (-14% in gennaio-agosto) che rappresenta per l’Italia il primo partner commerciale (quota sull’export pari al 13%). Domanda debole e profonda incertezza – anche in un’ottica di medio termine – rendono concreti i rischi di razionalizzazione di alcune produzioni ad elevata intensità energetica.

La specializzazione italiana nella chimica delle specialità e di consumo (quota di produzione settoriale pari al 61% a fronte del 45% a livello UE) rappresenta un fattore di relativa tenuta, anche alla luce del rientro delle quotazioni del gas su livelli più gestibili, ma non sgombra il campo dalle preoccupazioni.

La filiera è strettamente interconnessa, di conseguenza l’indebolimento delle fasi a monte danneggia anche le attività a valle.

A fronte di una contrazione nei primi otto mesi (-9,6%) amplificata dal confronto con una prima parte dello scorso anno ancora su buoni livelli e dal decumulo delle scorte, si stima per l’intero 2023 un calo della produzione chimica in Italia del9% con un recupero nel 2024 modesto (+1%) e soggetto a rischi al ribasso in relazione all’evolvere dei costi energetici e del quadro economico complessivo.

Nell’anno in corso si assiste a un miglioramento ma non una normalizzazione della bilancia commerciale (riassorbita circa la metà degli oltre 6 miliardi di aggravio sperimentati nel 2022 rispetto al 2021).

La correzione dell’import (-12,3% in valore nei primi sette mesi dopo il +29,4% dello scorso anno) riflette non solo il parziale rientro dei costi energetici, ma anche l’indebolimento della domanda interna.

La quota di import dalla Cina, pressoché raddoppiata nel 2022, non vede un significativo ripiegamento.  Anche l’export italiano di chimica perde terreno (-7,0% dopo il +20,1% del 2022) risentendo di una domanda industriale debole a livello mondiale e in calo soprattutto nel mercato europeo.

L’andamento del saldo commerciale dimostra come, anche in condizioni avverse, non sia possibile fare a meno della chimica.

Un indebolimento dell’industria chimica italiana e europea comporterebbe una grave perdita dal punto di vista economico, sociale e ambientale anche perché sarebbe inevitabilmente accompagnato da un aumento dell’import, spesso con minori garanzie in termini ambientali e di sicurezza.

Al contrario, una politica industriale in grado di promuovere una transizione sostenibile potrebbe rappresentare un importante volano di sviluppo per il Paese.

CRS4: Giacomo Cao confermato alla guida, per altri 3 anni

Il prof. Giacomo Cao, docente del dipartimento di ingegneria meccanica, chimica e dei materiali dell’Università di Cagliari e presidente del distretto aerospaziale della Sardegna (DASS), è stato confermato amministratore unico per ulteriori 3 anni alla guida del CRS4

Nel corso dell’assemblea, l’amministratore unico ha riassunto i principali risultati raggiunti del mandato conferitogli il 9 luglio del 2021: 47 accordi di collaborazione sottoscritti a titolo non oneroso, tra questi anche quello stipulato con l’Associazione “La Sardegna verso l’UNESCO” per il riconoscimento dei nuraghi quale patrimonio dell’umanità; 61 contratti stipulati per progetti e servizi, per un valore complessivo di 4.252.810 euro; 98 articoli scientifici, atti di congresso e capitoli di libro pubblicati o in corso di pubblicazione di cui 8 a firma dello stesso amministratore, su prestigiose riviste scientifiche internazionali; 2 domande di brevetto depositate, di cui uno vede tra gli inventori l’amministratore; 2 marchi depositati; 32 comunicati stampa; 875 uscite sui media locali, nazionali e internazionali; 16 precari storici assunti a tempo indeterminato; implementazione del primo piano della performance nella storia del CRS4 a partire dall’annualità 2022; ristrutturazione dell’organigramma aziendale per migliorarne l’efficacia e l’efficienza gestionale; analisi professionale del fenomeno di stress da lavoro correlato; partecipazione all’Expo di Dubai 2021-2022 con una parete interattiva di proprietà del Centro dislocata nel padiglione Italia; investimento da 5 milioni di euro per il rinnovo dell’infrastruttura computazionale; attivazione di un programma di ricerca e sviluppo nel campo dei computer quantistici; attivazione del settore di ricerca “aerospazio e tecnologie digitali”; creazione di un advisory board (comitato consultivo) di alto profilo tecnico e scientifico a livello internazionale.

Giacomo Cao, amministratore unico del CRS4 ha dichiarato: “Ringrazio sentitamente il presidente della Regione Sardegna Christian Solinas e Sardegna Ricerche per aver apprezzato il lavoro svolto in questo primo biennio. Sono contento di poter proseguire nel mandato per raggiungere importanti traguardi con particolare riferimento alle tecnologie legate ai computer quantistici e all’esplorazione dello spazio profondo che avranno una crescita esponenziale nei prossimi decenni. Vorrei sottolineare inoltre che negli ultimi mesi il CRS4 ha partecipato alla sottomissione di progetti di ricerca e sviluppo per un valore complessivo di oltre 550 milioni di euro, che potranno dare un significativo contributo alla crescita del Centro”.

AVEVA: potenziare la nuova forza lavoro nell’industria chimica

AVEVA XR

L’industria chimica deve affrontare un passaggio generazionale della forza lavoro. Operatori e ingegneri esperti stanno per andare in pensione, e la necessità di trasferire la propria esperienza alle nuove generazioni è sempre più urgente

Gli Universal Studios in Giappone hanno aperto di recente il primo parco a tema Super Nintendo World: ora è possibile entrare nel Regno dei Funghi e vivere il mondo di Mario in prima persona. Ma questa non è di certo la prima esperienza di Mario in tre dimensioni. Il primo Mario in 3D risale al lontano 1996. Mario in 3D è ormai cresciuto abbastanza per smettere di giocare, e trovare forse un lavoro in uno stabilimento chimico.

Ma cosa avrebbe trovato il nostro eroe nel suo primo giorno di formazione? La sequenza di qualificazione dell’operatore lo avrebbe stimolato? Nella vita reale, gli operatori odierni sono cresciuti in ambienti 3D in ​​cui possono interagire, esplorare, commettere errori e poi riprovare. E si aspettano un’esperienza simile in un corso di formazione industriale.

L’industria chimica deve affrontare un passaggio generazionale della forza lavoro. Operatori ed ingegneri esperti stanno per andare in pensione, e la necessità di trasferire la propria esperienza alle nuove generazioni è sempre più urgente. Tuttavia, molte aziende chimiche si affidano a metodi di formazione che non coinvolgono per niente la nuova generazione.

AVEVA sviluppa software industriali che ispirano le persone a creare un futuro sostenibile. Nel mondo della formazione degli operatori, ciò significa incoraggiare le aziende del settore industria chimica a utilizzare una modalità di apprendimento coinvolgente ed esperienziale.

AVEVA™ XR for Training sfrutta l’investimento del Digital Twin di un’azienda, per immergere i tirocinanti in un ambiente 3D coinvolgente, che riflette lo stabilimento reale in tutto e per tutto. Con una connessione diretta a un Operator Training Simulator AVEVA ™, l’ambiente di formazione può persino imitare il comportamento dinamico del processo di un impianto chimico.

E poiché operare in sicurezza non è un gioco, AVEVA™ Unified Learning  fornisce un servizio unico ed integrato per accompagnare gli operatori attraverso l’intero ciclo di apprendimento – Learn, Practice, Assess, and Reinforce – monitorando l’impatto sull’efficienza operativa.

Proprio come il mondo 3D di Mario, molte di queste tecnologie esistono da un po’ di tempo. L’elemento innovativo è AVEVA ™ Connect, ossia la piattaforma cloud. Il software AVEVA nel cloud favorisce la resilienza aziendale per i nostri clienti; consentendo loro di ridurre i costi e scalare processi facilmente, rispondendo a condizioni economiche dinamiche e garantendo una crescita sostenibile.

Per una dimostrazione di come le soluzioni AVEVA possono essere applicate, guarda il nostro webinar in cui BASF illustra la sua strategia per la formazione di nuovi operatori, nonché l’uso appropriato e i vantaggi della formazione esperienziale, inclusi simulatori e realtà virtuale. {Link https://sw.aveva.com/it-it/train-operators-for-a-sustainable-chemicals-industry}

James Wade – Portfolio Marketing Manager

James si è laureato alla Carnegie Mellon University in Mechanical Engineering and Engineering and Public Policy, e ha successivamente conseguito un MBA presso la New York University. Dopo aver ricoperto diversi ruoli in aziende tecniche, lavora ora ad AVEVA come Portfolio Marketing Manager per Operator Training Simulator.

www.aveva.com

Concluso ieri l’evento digitale Progetto Industria 2021 – Automazione, Processo, Digitalizzazione

evento digitale progetto industria

Si è tenuto ieri l’Evento Digitale “Progetto Industria 2021 – Automazione, Processo e Digitalizzazione, settore chimica e farmaceutica”

Siamo sempre in prima linea quando si tratta del settore chimica-farmaceutico, il portale www.progettoindustria.com infatti ha organizzato e tenuto ieri l’Evento Digitale “Progetto Industria 2021 – Automazione, Processo e Digitalizzazione, settore chimica e farmaceutica”.

Gli interventi come sempre sono stati importanti contributi, utili e significativi portati da diversi esperti del settore e soprattutto dalle aziende VEGA Italia – https://www.vega.com/it-it https://www.vega.com/it-it TERRANOVA INSTRUMENTS https://www.terranova-instruments.com/ che hanno sponsorizzato l’Evento.

Hanno poi partecipato poi il Prof. Ferruccio Trifirò, Direttore della rivista La Chimica&L’Industria, che è organo ufficiale della SCI – Società Chimica Italiana – e Professore Emerito del Dipartimento Chimica Università di Bologna.

Il suo intervento specifico, dopo una breve introduzione all’inizio dei lavori, è stato relativo ad una panoramica sull’evoluzione dell’industria 4.0 nel settore chimico e petrolchimico, con particolare riferimento alle nuove parole che la digitalizzazione oggi impone, e alla loro funzione e significato nel processo industriale chimico. Per concludere, si è poi soffermato sull’esperienza diretta di BASF https://www.basf.com/it/it.html, azienda importante del comparto.

Mentre il Prof. Fabrizio Connicella, General Manager di OpenZone SpA e Zcube srl del gruppo ZAMBON FARMACEUTICA, ha raccontato la Sua interessante esperienza nella Digitalizzazione e Automazione nel Processo del settore Farmaceutico.

VEGA ITALIA ha presentato dal vivo la tecnologia di misura di livello radar per l’industria chimica grazie all’intervento della Dr. ssa Alessia Sanfilippo – Lead Generation Specialist e del Dr.  Alessio Cannizzo – Technical Inside Sales, che hanno saputo spiegare con naturalezza e semplicità funzionalità e potenzialità, caratteristiche peculiari e vantaggi nell’utilizzo degli strumenti VEGA Italia, mostrando proprio dal vero il processo, e quasi facendo toccare “con mano” lo strumento.

Per TERRANOVA INSTRUMENTS invece, è stato il Dr. Maurizio Petri a raccontarci l’azienda, facendo una rapida introduzione e addentrandosi poi nella specifica spiegazione, molto accurata e minuziosa dei TRASMETTITORI DI LIVELLO A BARRA DI TORSIONE, tra i prodotti punta di diamante dell’Azienda.

Per maggiori informazioni e dettagli, potete scoprire su questo stesso portale www.progettoindustria.com, tutto quello che volete sulle due aziende, sulla loro storia, i prodotti, le tecniche.

A chiusura dell’Evento on line la Dr.ssa Ilaria Bonetti – Responsabile Unit Innovazione e Progetti di Innovhub SSI, della Camera di Commercio di Milano, Monza e Lodi, ha illustrato Il Punto Impresa Digitale con tutti i Servizi per l’Automazione e Digitalizzazione a disposizione delle Piccole e Medie Imprese.

A breve, on line ci sarà il video dell’Evento e dei singoli interventi, sia sul portale www.progettoindustria.com che su www.ambientesostenibile.com e sul canale YouTube industriavideochannel.

Seguiteci sempre anche su Linkedin e sugli altri nostri profili social!

ITAL CONTROL METERS presenta il sensore Sofraser MIVI, unico viscosimetro MIVI, certificato EHEDG

sensore viscosimetro certificato EHEDG

Nell’industria farmaceutica gli standard qualitativi richiesti da normative ed enti regolatori sono elevati. Il sensore Sofraser MIVI è l’unico viscosimetro al mondo certificato EHEDG e conforme all’industria 4.0

E’ fondamentale che ogni componente del processo di produzione non alteri il prodotto.  Il sensore Sofraser MIVI è l’unico viscosimetro al mondo certificato EHEDG e conforme all’industria 4.0. Garantisce la massima produzione e qualità del prodotto finale fornendo misurazioni istantanee 24 ore su 24, 7 giorni su 7 e analisi efficienti come viscosità dinamica o cinematica, densità, concentrazione, rilevamento di fase, ecc. L’inserimento dell’asta vibrante nei processi riduce drasticamente le perdite e ottimizza la qualità. Texture, consistenza e concentrazione sono garantite con la massima precisione senza rischio di inquinamento batterico. Compatibile con gli ambienti più difficili, il viscosimetro MIVI offre le massime prestazioni sul mercato e si adatta a molteplici configurazioni di montaggio, consentendo una misurazione ottimale dei fluidi.

Con MIVI non è necessario scegliere tra efficienza e sicurezza sanitaria.

PRINCIPIO DI MISURA

Inventato e brevettato nel 1981 da Sofraser, si basa sul controllo dell’ampiezza della vibrazione (che avviene alla frequenza di risonanza) di un’asta metallica immersa nel fluido da misurare. La variazione di tale ampiezza è inversamente proporzionale alla viscosità del liquido.

LA TECNOLOGIA

Progettato per installazioni negli impianti di processo il MIVI è un viscosimetro accurato, stabile e affidabile per controlli e regolazioni di viscosità in continuo. Nessuna parte meccanica mobile, solo una asta inox in micro vibrazione, quindi nessuna deriva di misura e manutenzione nel tempo praticamente nulla.

Sensore installabile sia ad inserzione su serbatoio, vasca o reattore che direttamente in linea o ricircolo ed anche in bypass mediante una apposita cella di flusso inox. Misura diretta ed immediata della viscosità dinamica e della temperatura, con possibilità di calcolo della viscosità a temperatura di riferimento. In opzione è disponibile anche la versione che oltre alla viscosità dinamica misura anche la densità e consente quindi anche il calcolo immediato della viscosità cinematica.

LO STRUMENTO

Peso e dimensioni contenute lo rendono adattabile facilmente a qualsiasi situazione di installazione. L’asta vibrante esercita una effetto naturale di auto-pulizia del sensore, questo evita nella stragrande maggioranza delle applicazioni lo sporcamento del sensore e ren[1]de nulla la manutenzione dello stesso. La massa vibrante limitata e l’elevata frequenza di vibrazione rendono questo sensore praticamente indipendente dalla velocità di transito del fluido, consentendo misure stabili ed accurate sia in condizioni dinamiche che statiche (flusso fermo). Del tutto insensibile alle vibrazioni di impianto risulta stabile anche in applicazioni molto critiche.

LE APPLICAZIONI

Nei processi di polimerizzazione il MIVI si installa direttamente nel reattore o in un circuito di ricircolo e tiene costantemente monitorato il processo fino all’esatta determinazione del suo completamento. In campo chimico è consigliato per la misura di polimeri, plastiche, resine e gel. Misura e regolazione di oli combustibili per l’ottimizzazione della combustione e la riduzione della manutenzione. Verifica produzione e controllo qualità di oli combustibili e lubrificanti. Impianti di stampa e rivestimento per vernici, inchiostri e rivestimenti sia a base solvente che a base acqua. Raffineria per la misura dei derivati dal petrolio con molte applicazioni anche per prodotti pesanti di fondo colonna. Nell’industria farmaceutica e cosmetica per gel, sospensioni ed emulsioni. Industria alimentare per il controllo del latte, formaggi, yogurt, salse e succhi di frutta.

ANALISI DI PROCESSO ITALCONTROL

Il viscosimetro MIVI è il cuore di un sistema pensato per effettuare in modo completamente automatico l’analisi qualitativa nella produzioni di oli nel settore petrolchimico. Ci sono diverse versioni disponibili: dal Thermoset-CF skid autonomo per la misura della viscosità dinamica a temperatura di riferimento ed anche dell’indice di viscosità secondo ASTM 2270-04. Thermoset-LT è la versione più economica priva della pompa di prelievo. Più recentemente è anche stato sviluppato il Thermoset-KV che misura invece sia la viscosità dinamica che la temperatura del fluido calcolando quindi la viscosità cinematica a temperatura di riferimento.

Progetto ChemChain: Solvay e economia circolare

automazione digitale farmaceutica

Il Gruppo Solvay sta testando la tecnologia blockchain nell’ambito del progetto ChemChainfinanziato dall’Unione Europea, per tracciare i suoi prodotti lungo tutta la catena del valore, con l’intento di facilitare il riciclo dei materiali e l’avvio di progetti di economia circolare


Si pensi che oggi l’industria chimica globale spende una cifra stimata di 9,5 miliardi all’anno per gestire le informazioni sulle 150.000 sostanze chimiche distribuite nel mondo. Tuttavia, i sistemi esistenti sono comunque complessi, non completi e affetti da limiti di confidenzialità sulle informazioni.

Per contro, le aziende oggi sono chiamate a incrementare la condivisione delle informazioni sulle composizioni chimiche e sul livello di sostenibilità dei prodotti lungo tutta la supply chain, e le industrie devono trovare un meccanismo comune e scalabile per scambiarsi le informazioni relative al prodotto.

Date anche le crescenti sfide in termini di circolarità e sostenibilità, che orientano anche lo sviluppo di nuovi requisiti normativi e di attività di corporate responsibility, gran parte delle aziende dichiarano di aver ricevuto richieste crescenti per l’inserimento dei dati sulla composizione chimica sui prodotti. 

Questi dati sono necessari ma non sono disponibili lungo la value chain. Inoltre, un numero sempre maggiore di clienti compie le sue scelte di acquisto in base al livello di sostenibilità, dando precedenza ai prodotti con politiche sostenibili chiaramente definite.


Ecco il contesto al quale intende rispondere ChemChain, con un’infrastruttura blockchain open source, pensata per registrare, condividere e tracciare le informazioni legate alla composizione chimica lungo tutta la supply chain, dal produttore delle materie prime fino al consumatore finale.

Con ChemChain, le società produttrici possono conoscere l’origine esatta delle loro materie prime, e i consumatori analogamente conoscere il materiale con cui il prodotto acquistato è fatto e qual è il suo livello di riciclabilità o biodegradabilità.

Le società che si occupano di riciclo possono avere ulteriori informazioni sui materiali trattati; nel caso questi tornino come materia prima a Solvay, anch’essa sarà in grado di verificare la loro origine.

«ChemChain sarà un elemento importante del nostro percorso verso l’economia circolare, e questa è uno dei maggiori contributi che l’industria chimica può fornire ad un futuro sostenibile» commenta Sophie Maillet, Digital Hub Coordinator di Solvay.

Per il 2030, Solvay intende triplicare le vendite di prodotti basati su risorse rinnovabili o riciclate, portandole al 15% del fatturato del gruppo.

VEGA ITALIA: il nuovo sensore di livello per i liquidi

sensore Vegapuls 64

Con il suo campo dinamico di 120 dB, il sensore di livello VEGAPULS 64 effettua una misura di livello affidabile praticamente in qualsiasi tipo di liquido

Il suo ampio spettro applicativo si estende dai prodotti acquosi fino agli idrocarburi, e ancora, fino ai gas liquefatti, indipendentemente dalla costante dielettrica.

Grazie all’ottima focalizzazione del segnale, il sensore di livello garantisce la massima precisione dei risultati di misura anche in caso di impiego in impianti complessi con agitatori o installazioni interne.

Grazie agli attacchi di processo di piccole dimensioni, si presta all’impiego in serbatoi compatti. Il sensore di livello è ideale per la misura continua di livello su liquidi nell’industria chimica, farmaceutica e alimentare, nonché nel settore energetico e del trattamento delle acque.  

I benefici di VEGAPULS 64

  • Risultati di misura precisi indipendentemente dalle condizioni di processo
  • Elevata disponibilità dell’impianto, in quanto senza usura nè manutenzione
  • Funzionamento senza manutenzione grazie al metodo di misura senza contatto

Lo strumento di misura di livello radar VEGAPULS 64 fornisce valori di misura precisi e in presenza di condizioni di processo variabili

Quando si parla di tessuti con caratteristiche particolari, è molto probabile il coinvolgimento della CHT Germany GmbH. Il produttore di specialità chimiche fornisce ad esempio addensanti per colori tessili, impiegati per la stampa di tessuti.

Nello stabilimento di Dusslingen, vicino a Tubinga, si producono 50.000 tonnellate all’anno di specialità chimiche per il mercato B2B.

Una sezione composta da diversi impianti di miscelazione è destinata alla produzione di prodotti ad alta viscosità.

Ciascuno dei serbatoi è dotato di tre motori che, con una potenza che raggiunge i 160 kW e i 1000 giri al minuto, assicurano una miscelazione ottimale.

Nel corso della lavorazione, gli organi di miscelazione multilivello devono sempre essere immersi nel liquido.

In caso contrario, considerata la potenza dei motori, potrebbero crearsi vibrazioni e oscillazioni di risonanza che a lungo andare danneggerebbero l’albero o l’intero aggregato.

Ma come è possibile avere la certezza che gli organi di miscelazione siano sempre ricoperti dal liquido?

I miscelatori vengono infatti impiegati in serbatoi alti fino a otto metri e larghi due metri, in cui, oltre alle condizioni di processo, variano quotidianamente anche le caratteristiche dei prodotti, come la densità e la viscosità.

In passato, per evitare il danneggiamento dei miscelatori e l’insorgere di oscillazioni di risonanza, si procedeva con molta cautela, controllando ripetutamente il livello manualmente.

La soluzione adottata inizialmente, ovvero l’installazione di celle di pesatura sotto ai serbatoi di miscelazione, si è rivelata problematica per varie ragioni: i prodotti hanno infatti diverse densità e il serbatoio è munito di un rivestimento refrigerante/termico.

Talvolta questo è riempito solo di vapore, per cui non pesa quasi nulla. Un altro problema era costituito dal fatto che in passato i serbatoi si trovavano su un unico livello ed erano circondati da una zona Ex.

Nel frattempo i serbatoi sono collocati in un altro edificio e occupano più piani.

In caso di impiego di celle di pesatura, il serbatoio deve essere disaccoppiato meccanicamente dalle pareti.

La zona Ex si estenderebbe su diversi piani e pertanto l’intero edificio dovrebbe essere adeguato alla normativa ATEX, cosa che comporterebbe costi immensi.

La quasi totalità dei circa 6000 prodotti di CHT è realizzata su misura.

Per garantire un rifornimento puntuale dei propri clienti e soprattutto un elevato livello qualitativo, l’azienda necessita di processi produttivi estremamente razionali ed efficienti.

Pertanto si è adottata una soluzione per il controllo di processo impiegata nell’industria manifatturiera, adattandola alle specifiche esigenze dell’industria chimica.

L’obiettivo era integrare una misura di livello i cui risultati di misura si ripercuotessero direttamente sulla potenza motrice dei motori dei miscelatori. Di per sé la misura di livello non era necessaria ai fini della misura delle scorte o per il dosaggio, poiché per questo presso CHT si impiega una pesatura negativa delle materie prime richiesta per la protezione dell’impiantistica.

Lo strumento di misura di livello radar VEGAPULS 64 misura in maniera affidabile il livello negli impianti di produzione.

Il lancio del VEGAPULS 64 fu provvidenziale per l’azienda.

Lo strumento di misura di livello radar esegue la misura senza contatto e grazie alla straordinaria focalizzazione e all’elevata dinamica fornisce valori affidabili nonostante depositi, schiuma, installazioni interne e indipendentemente da oscillazioni della densità.

Nel complesso la collaborazione con VEGA è stata ottima, anche se inizialmente il servizio di assistenza di VEGA ha dovuto effettuare numerosi aggiustamenti prima di poter disporre di una misura stabile. Nel giro di due settimane lo strumento di misura di livello radar era installato. Nel frattempo fornisce valori di misura precisi, anche con i miscelatori in funzione, e i dati sono integrati nel sistema APROL.

Evento Digitale “Industria di Processo 2021 – Automazione e Digitalizzazione” – 28 Aprile 2021

evento digitale progetto industria

Il prossimo 28 Aprile 2021, alle 14.30, su piattaforma Zoom, si terrà l’Evento Digitale Progetto Industria 2021 – Industria di Processo – Automazione e Digitalizzazione

Sarà molto interessante ascoltare Aziende ed Esperti del settore che raccontano il loro approccio nell‘industria di processo in ambito chimico e petrolchimico.

Le soluzioni  tecnologiche per rendere i processi industriali sostenibili e migliorarne le performance energetiche e di produzione e controllo.

In linea con il Green Deal Europeo, la produzione industriale sarà sempre più circolare, sostenibile e efficiente. Quali sono le opportunità di business e quali in futuro. Questi tra i temi principali, oltre alla digitalizzazione e automatizzazione del settore chimico, farmaceutico e oil&gas.

I CONCEPT

processing

– engineering

– digitalizzazione del processo

– business intelligence

– adaptative manufaturing

– l’importanza digitale e tecnologica in questo settore e in questo periodo

– i nuovi modelli di business

– le nuove competenze per l’Industria 4.0

– il problem solving

– l’adeguamento alle nuove misure cautelative e nuovi parametri di lavoro (smart working)

– novità e strumenti

Sarà molto interessante ascoltare direttamente dalle aziende, Industrie, PMI e le loro esperienze, ma soprattutto qual è stato e qual è anche adesso il loro approccio alla situazione attuale lavorativa, con nuove soluzioni, strategie, proposte, prodotti e servizi, attraverso una presentazione mirata e la condivisione in share screening.

MODALITA’: Registrazione su Piattaforma ZOOM e condivisione sul portale www.progettoindustria.com, sul canale YouTube industriavideochannel, su Linkedin (community di oltre 3.100 contatti qualificati nei settori coinvolti), e sugli altri profili social.

SPECIFICHE NEL DETTAGLIO

Automazione – Analisi e Controllo – Impianti e ingegneria di Processo – Digitalizzazione (servizi e trasformazione nell’industria) – Bussiness Intelligence e Intelligenza Artificiale  – Industry 4.0Ingegneria  –  Industria di ProcessoOil& Gas e Movimentazione Fluidi (pompe e valvole) – Smart ManufacturingSmart WorkingSoftware Industriale  – Tecnologia & Strumenti.

COMUNICAZIONE DIGITALE

Comunicazione dell’Evento sul portale attraverso un grande banner in home page, dal quale l’utente potrà accedere direttamente per avere maggiori dettagli sull’evento digitale e sui banner delle aziende, cliccando su ciascuna azienda potrà inoltre trovare (ed eventualmente scaricare) schede di prodotto, video, post, o altro ancora che l’azienda vorrà appunto mettere on line, programmandoci in tempo utile. Verranno inoltre inviate periodicamente delle newsletter al database di oltre 14.000 nominativi qualificati di Progettoindustria.com.

Iscrizione gratuita per partecipare all’Evento online e avere maggiori informazioni scrivendo una mail a promozione@progettoindustria.com

Turck Banner: nuovi sensori radar IO-Link

sensore radar

Turck Banner Italia, tra i principali fornitori di sensoristica, illuminatori e segnalatori industriali, sistemi bus e sicurezza, ha presentato la nuova famiglia di nuovi sensori radar compatibili con IO-Link della serie LRS

La nuova famiglia di nuovi sensori radar va a completare il portafoglio delle soluzioni per la misura dei livelli nella gamma da 0,35 a 10 m.

I nuovi dispositivi, con protezione IP67/69K, sono particolarmente indicati per applicazioni impegnative: ad esempio, nell’automazione industriale dove i sensori ottici o a ultrasuoni non sono particolarmente idonei a causa di vari fattori d’interferenza quali polvere, vento o luce.

I nuovi sensori radar della famiglia LRS a radiazione libera offrono anche funzioni di analisi dettagliate che, in passato, erano possibili solo grazie a sensori radar di alta gamma, utilizzati spesso nell’industria di processo.

La novità targata Turck Banner trova ideale applicazione anche in altri campi industriali quali l’ingegneria meccanica, l’impiantistica, l’industria automobilistica e le industrie alimentare e farmaceutica.

L’assenza di un’asta metallica di guida favorisce l’utilizzo in aree a particolari esigenze igieniche e semplifica la messa in servizio.

Il touchpad della serie LRS, con pulsanti capacitivi e un cappuccio frontale traslucido,è basato sullo stesso concetto della piattaforma del sensore Fluid 2.0 di Turck Banner e consente l’emissione di valori di distanza, livello e volume.

I sensori LRS sono disponibili con due uscite di commutazione o con un’uscita di commutazione e un’uscita analogica.

Grazie alla loro interfaccia IO-Link aggiuntiva e alla preelaborazione intelligente decentralizzata del segnale, tutte le varianti forniscono una grande quantità di informazioni aggiuntive per l’elaborazione nelle applicazioni di monitoraggio delle condizioni in ambiente IIoT.

Ciò significa oltre all’intensità del segnale, l’inclusione di valori di temperatura, ore di funzionamento o cicli di commutazione.

Grazie al master IO-Link di Turck Banner si può monitorare e programmare il radar attraverso il configuratore IODD senza alcun software aggiuntivo. Lo strumento di configurazione è basato su browser e visualizza graficamente la curva di misurazione del sensore, oltre a offrire l’accesso in semplice testo a tutti i parametri rilevanti. Ciò consente ad esempio di mascherare il segnale di interferenza di un agitatore o di una griglia o di allinearsi perfettamente con il feedback in tempo reale del sensore per massimizzare l’affidabilità della misura di livello in applicazioni impegnative.

I nuovi Turck Banner Radar Monitor offrono, con i master IO-Link Turck Banner e senza software aggiuntivo, un’efficace e approfondita funzione di analisi in tempo reale. La logica operativa è uniforme in tutta la famiglia Fluid 2.0, il campo di misura da 0,35 a 10 m, con un angolo di apertura stretto, e l’emissione dei valori di livello o volume è diretta.

La soluzione è particolarmente conveniente per le applicazioni impegnative grazie alle sue funzioni di analisi equiparabili a quelle di fascia alta. La nuova soluzione LRS510 rappresenta la risoluzione dei problemi, quando altre tecnologie di sensori raggiungono i propri limiti.

La messa in servizio tramite il Turck Banner Radar Monitor è particolarmente veloce.